A Second Order Well-Balanced Finite Volume Scheme for Euler Equations with Gravity
نویسندگان
چکیده
We present a well-balanced, second order, Godunov-type finite volume scheme for compressible Euler equations with gravity. By construction, the scheme admits a discrete stationary solution which is a second order accurate approximation to the exact stationary solution. Such a scheme is useful for problems involving complex equations of state and/or hydrostatic solutions which are not known in closed form expression. No á priori knowledge of the hydrostatic solution is required to achieve the well-balanced property. The performance of the scheme is demonstrated on several test cases in terms of preservation of hydrostatic solution and computation of small perturbations around a hydrostatic solution.
منابع مشابه
A well-balanced finite volume scheme for the Euler equations with gravitation
Context. Many problems in astrophysics feature flows which are close to hydrostatic equilibrium. However, standard numerical schemes for compressible hydrodynamics may be deficient in approximating this stationary state, in which the pressure gradient is nearly balanced by gravitational forces. Aims. We aim to develop a second-order well-balanced scheme for the Euler equations. The scheme is de...
متن کاملA geometry-preserving finite volume method for compressible fluids on Schwarzschild spacetime
We consider the relativistic Euler equations governing spherically symmetric, perfect fluid flows on the outer domain of communication of Schwarzschild spacetime, and we introduce a version of the finite volume method which is formulated from the geometric formulation (and thus takes the geometry into account at the discretization level) and is well–balanced, in the sense that it preserves stea...
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملA well-balanced scheme to capture non-explicit steady states in the Euler equations with gravity
This paper describes a numerical discretization of the compressible Euler equations with a gravitational potential. A pertinent feature of the solutions to these inhomogeneous equations is the special case of stationary solutions with zero velocity, described by a nonlinear PDE, whose solutions are called hydrostatic equilibria. We present a well-balanced method, meaning that besides discretizi...
متن کاملFinite Volume Solution of a Cylinder in Cross Flow with Heat Transfer
A finite-volume model has been developed to study incompressible forced flow heat transfer of air over a circular cylinder in cross flow. An artificial compressibility technique is applied to couple the continuity to the momentum equations. The proposed explicit finite-volume method (FVM) uses a novel discretization in time and space. The governing equations are solved by time-marching using a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 37 شماره
صفحات -
تاریخ انتشار 2015